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L! ABSTRACT

Expressions for the vibratory pressure field produced by an

operating counterrotating propeller system are developed in terms of

first and second blade harmonics of the individual propellers. The

Fcoefficients of the first and second blade harmonics of a 3-bladed
propeller are expressed in closed form in terms of complete elliptic

integrals., It is found that the pressure signal due to a counter-

rotating propeller can be obtained from the summation of the pressure
fields of its two components as though the two propellers operate as

I separate units, since their mutual interference has been found to

contribute little to the total vibratory pressure signal in the nearLfield, This study indicates that the counterrotating propeller system

has vibratory characteristics much superior to an equivalent single

propeller having the number of blades of one of its components, delivering

the same thrust at the same RPM at optimum conditions. A study of the

interference effects by means of a two-dimensional analogue indicates

1_ that the effect of the forward propeller on the aft is much greater

than the effect of the aft propeller on the forward propeller.
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INTRODUUT ION

Counterrotating propellers are an important means of implementing

high-powered propulsive units. It has been generally accepted that, with

this propeller system, propulsion losses are minimum and therefore

efficiency is high. However, because of mechanical complications this

type of propulsion has found little practical applicationj it has been

adopted chiefly for torpedoes. It is the purpose of this investigation

to consider the vibration-producing characteristics of counterrotating

propellers and to compare them with those of a single propeller with the

expectation that counterrotating propellers may show advantages in

reducing vibration.

The pressure field generated by an operating propeller is mainly

responsible for the vibrations experienced by neighboring boundaries.

In view of present technical developments with continuously increasing

propulsive forces, the vibratory motions due to the pulsating pressure

field may well be expected to increase to a degree which will require

either a drastic change in the stern configuration or a different

propulsion device. Although other considerations such as avoidance of

cavitation and diminution of noise will undoubtedly weigh more heavily

in the selection of a new design than the vibration--causing qualities,

nevertheless it would appear important in future design work to evaluate

these characteristics for the two configurations which are feasible

changes from the usual propeller arrangement, viz. counterrotating

propellers and shrouded or "nozzle" propellers.

Breslin (1) has made a theoretical study of the pressure field

near an operating ship propeller in the open water condition. By using

vortex line theory and representing the propeller blade by three types

of vorticity, a hub vortex streaming aft along the x-axis, a bound

vortex fixed at a position of the blade axis and a tip vortex streaming

aft in the form of a helix, he determined the instantaneous pressure

at any point in the field.

It was found that the total pressure at a point in the field is
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purely convective pressure ('s8g/ax) since the impulsive part of pressure

due to the time rate of change of blade position is annulled by part of

the convective pressure. It may be stated, therefore, that the pressure

can be investigated as a steady-state phenomenon depending on the blade

position. This fact makes for considerable simplification in the present

investigation. In References 2 and 3, the blade frequency pressure and

I velocity fields around a marine propeller due to loading and thickness

effects have been determined in closed form in terms of complete

I elliptic integrals. If the mutual interference of the two propellers is

neglected and the results of References 2 and 3 are used, the pressure

field around two counterrotating propellers will be determined as a

function of blade position. In contrast to the case of a single propeller

where only the m-blade frequency need be considered, in the case of two

1counterrotating m-bladed propellers both the m and the 2m blade

frequencies (M and m ) are of practical significance.

In the first part of the present investigation expressions for

the fluctuating pressure signal due ;o the counterrotating propellers

Ihave been developed as though the two propellers operate as separate

units without any interference between them. Expressions for the first

and second blade harmonics of the pressure signal have been evolved

for the case of a pair of 3-bladed propellers in terms of complete

I elliptic integrals.

The second part of this investigation is concerned with the mutual

interference of blades as they approach and pass each other. The inter-Iference leads to a time-dependent increment of lift (thrust) which

averaged over time remains close to zero but instantaneously may be

large although of short duration. This interference effect is studied

under two-dimensional flow conditions which are more amenable to

1 mathematical analysis than the three-dimensional flow. The magnitude

of the interference effect on the pressure in an actual three-dimensional

case will be much smaller.

The third part deals with the evaluation of the pressure field

Iin the presence of 3-0-3 counterrotating propellers. (The first digit

in the designation denotes the number of blades in the forward component,I the second the number of countervanes and the third the number of blades

1
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in the after component.) The expressions evolved in the analysis are

1used to determine the coefficients of the 3rd and 6th harmonics of the

pressure signal due to each 3-bladed propeller separately at 6 different

stations, up to an axial distance of 0.8 of the propeller radius, for four

different tip clearances. By combining the corresponding Fourier coefficients

the pressure signal in the field of the 3-0-3 propeller system is determined.

In addition, the case of a single 3-bladed propeller producing equivalent

thrust and having the same RPM as the 3-0-3 system is treated and its

pressure field compared with that of the counterrotating propellers.

This study is prepared under Contract Nonr 263(16), of the Bureau of Ships

Fundamental Hydrodynamics Research Program, Project S-RO09-01-01, and

technically administered by the David Taylor Model Basin.I
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ANALYSIS

Part I

Simplified Theory for the Oscillatory Pressure Field
About Counterrotating Propellers

In this propeller system two coaxial propellers are situated a

short distance apart and are rotated in opposite directions. Due to the

short axial separation there will be mutual interference between the

two propellers. In this part of the investigation, however, the blade

interference effects will be neglected and the pressure field will be

evaluated as if the two propellers influenced the field separately.

Breslin (1) has shown by vortex line theory and also by use of

doublet distributions that the linearized pressure charge in an other-

wise unbounded fluid due to an operating m-bladed propeller is the sum

of thrust-produced pressure and torque-produced pressure as followst

p P T+PQ

fr --Tr-

where

P T x os ds

0 0

PQn . .j* r sina ds (2)and 17- 7 E R 3 (2

0 0

T' = thrust loading coefficient - T/ub2 where T is
whereT isthrust and

b propeller radius

m - number of blades

J = advance ratio, where v is the velocity of advance

nD



n - r.p.so and D - propeller diameter

R w (x +r2+s 2re Cosa)

xr,y - cylindrical coordinates of the field point in the fluid at

which the pressure signal is calculated.

- - y , where 9 is the blade position angle.

s is dimensionless blade span.

The foregoing expressions (1) and (2) are referred to a coordinate

system with the origin at the propeller center (Fig. 1) and all the linear

dimensions are mutltiples of the propeller radius b

In the counterrotating propeller configuration, the origin of

the coordinate system is taken on the axis of rotation midway between

the propeller mid-planes, i.e. at a distance + x from the forward
- 0

and aft propeller, respectively. The x-axis is taken along the axis

of rotation opposite in direction to the main stream flow (Fig. 2).

Since Eqs. 1 and 2 have been developed by making use of the

results of the linearized theory, the instantaneous pressure signal

of the counterrotating propeller configuration will be given by

p.0(()+P ) (P (2) + p(2)) (3)

where the forward and the after propeller are designated by superscript

1 and 2, respectively, and P1 ,2  and P1 2 are as given in Eqs. (1) and (2)
T ar

with the only difference that x should be replaced by x - x0  for

the forward propeller and by x + x for the after propeller.

An important aspect of the pressure field is revealed by seeking

the contribution at m and 2m frequencies. The total pressure signal

at any given point of the field will be expressed in terms of Fourier

coefficients as

i-2 OD I M-l 12Dn
SE A cos k a + X I A cos k -v

n k-O n-1
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1-'2 cD n-1 aD 2
{ Bk sin k a + Bk sin k (s + - n) (4)

i-Ik n-I k-0

where ai- 9 -y - the instantaneous angular position of the blade relative

to the station where the pressure signal is determined. In the first

summation over i , I and 2 correspond to the forward and aft propeller.

IThe second summation over k gives the contribution of all harmonics

and the third summation from n - 1 to m - 1 arises through the

inclusion of the contributions of the other m - 1 blades which are

spaced at angular intervals of 2 - etc.m m

It is shown in Appendix A that

n=m-1

cos k(a i + L' n)- cos ka for k not an integer multiple

n-l of m.

(m-l)cos k a I  for k an integer multiple! of m.

andI n-Ii
n---sin k a for k not an integer multiple

sin k(a+ L n) of mI2 m {

(m-l)sink a for k an integer multiple

Iof m .

For the case of k a non-integer multiple of m , P - 0 soIthat there is no contribution to the pressure signal from the harmonics

which are not integer multiples of the blade frequencies. The only

terms which contribyte to the pressure signal are harmonics of m aI
or higher multiples of m a * which are known as the harmonics of1

1
I.
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the blade frequencies. Therefore, the total pressure signal will be

given as

-- i=2 D 1-!2 oD
pi i i i

-m - m A cos nm a + m Binmnsi(

i-l n-i i-l n-i

When only the first two blade frequencies are considered,

p p(l)+p(2) (1) (1) (2) (2) (1) (1) (2) (2)
-' TT- a A m  cos m , + Am cos ma +B sin m a +B sin m L

WA(1) 2m (1) (2) (2) (1) (1) (2) (2)
2m cos A 2m cos2m c +B2  sin 2ma +B2m sin 2m

(1) (2)(6)

The angular blade positions a and (2 for the two components of

the counterrotating configuTation change with time according to the

relationship

d- (1) dd(2) . 2w
dt dt

- since both are jotating with the same angular velocity w around the same

axis but in opposite directions. Then the angular blade position of the

after propeller is given in terms of the forward by

a(2) (l) 2wt+c

where c is a constant depending on the initial conditions. Under the

assumption that at t - 0 , Q 0 and a (2). 2 , the above relationm
becomes

m

It i's of interest to examine the situation at two instants of

time, when the blades are in alignment (in phase) and when they are

farthest from alignment (out-of-phase). The in-phase condition will

I
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exist when

a (l). (2) or t-- (7)

and the out-of-phase condition will be given when

(2) + or t- (8)
- m 2rm

i.e. when the blades of the after propeller bisect the angles between

the blades of the forward propeller. For the in-phase condition, the

total pressure signal will be given (see Appendix B) by

P (I) (2) ) (1) ( i) (2) (1)

T i-" (Am + Am  )cos m + A2m )cos 2m

+(Bm + B )sin m a + (B2  +B2 )sin 2m L (9)

i i i i

where Am V A2m , Bm and B2m are the m and 2m harmonics of the

Fourier series representing the expressions for the pressure components

of Eq.(2). For the out-of-phase case, the total pressure signal will

be given (see Appendix B) by

P (1) (2) (1) (1) (2) (1)

T- - (Am -A m  ) cos m a + (A2m + A2m )cos 2m aI
(1) (2) (1) (1) (2) UI

(B - B ) sin m a + (B2m +B2m )sin 2m a (10)m i

Therefore for all instants at which the blades are in coincidence the

1pressure signal contains m-blade frequencies as well as 2m-blade

frequencies, whereas out-of-phase it seems that the m-blade signals

tend to cancel each other leaving mainly the 2m-frequencies. As

will be seen later on from the calculations, the cancellation will

Ioccur at large distance from the propeller plane.

In order to calculate the pressure signal at any point in the1
I



field by means of eq. (9) and (10) it is necessary to evaluate the

j Fourier coefficients for the first and second blade frequencies in

advance. This can be done by restricting our attention to the

pressure field near a single m-bladed propeller. Then the generalI expressions which have been developed may easily be transformed to

equivalent expressions for the description of the pressure field due

to a pair of counterrotating propellers at a distance + x from

the new origin (Fig. 2).

I As demonstrated in Reference 2, for the case of 3-bladed

propellers the thrust contribution contains only cosine terms and the

torque contribution only sine terms. It was found in that reference

that the Fourier coefficients of the first blade harmonic of the

1 pressure signal due to the loading are given by

A3 "" c 2 x- cr Ia[r+l+ (r+l)+ - I[2r+ r + r)

n n
[ A4r+5 4(r+l) A8r+16 8r 16

0  n 2 2 n n2 4[ }

for the cosine term and

41 aI~ 3  4r+4 Ib 4r
3c - n 43r+ --

3 -1 v ~cr n n

4n n 4nnIA A28

-48r+16]+ (. [32r] (12)

for the sine coefficient, where

C4
2r2)1/2 21/2x2

1
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( coe

C, M (the coefficient of the torque component)

c2 = (the coefficient of the thrust component)

2 , 2  ,2 2k2

r 2 2l +x +r l~k2

a 2 2 2 ( 2
a -T-(,k')- 2 2  I k')

I b 21fJ(, k)- 2 1 2 _1( 2 k-)

A- F(k,) A2= 2 [(F(k')- E(k')] (13,)

0 (k')

2m(lk '2 )A2m+(l-2m)A2m-2

A2r+2: (2m+l)(k')2

H(d2,kl), [I (P2,k') are complete elliptic integrals of the

third kind

F(k') and E(k') are complete elliptic integrals of the first
and second kind respectively

I 2

1and other symbols are as defined in eq. (2).

In Appendix C, the general procedure for determining theI coefficients of the second blade frequencies of the pressure signal
due to a 3-bladed propeller and the evaluation of some representative

integrals are demonstrated. The results aret

for the cosine coefficient,I
I
I
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L)3 . 12 1 1/2 i5/2_ 1)(i)3/2

A6- 2c -32(1+ + 48(1+ 1) -18(1+ ).1.32(1+ 1(

2 In(l n n n 2 03

n n

.4548 -2) 8"-s)+ 1(2 6 )6 +L(o 2]2.211~ 16 22r 9,12 41 11
f r an n L ' n r n r

b n n 0 r n r n n

-4A [ 48+ L-)+ -(8o. L) + (32+162 r n r rn

+17 1 6) 2 128 A 9 1) 2
4nr' r 6 r n r

+512 A (1+ }-+ 1]- 1024 A - (14)
8 r n 10 r'

4

where 4
2 2 1/2 21/2

and for the corresponding sine coefficient,

2c, 112 )3  112n(1+ 1) 2 1/2n(1+ - 1- /2

1 / /2 } /B60 2 32 n1/(1+.) 64 n+38 ( 6 n -
rn n

- 32(1. 1)5/2 + 48(1+ 1) - 18(1+ 1) + 1 +n n n T7

+ I6r+6 38r+32 64r+32 232r ( + 64 64n aL-- n 2- + y + - b+ n +7 ]

n n n n n

4 A [6r+6 38r+32 64r+32 32r

o n 4---- +  3 + ]
n n n
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A 152r+140 + 256r+192 + 128r+64
2 n + 2 3)()

n n

+ A [ 1176r+896 + 768r+384 + 128r
4 n 23

n n

-A614096r+2304 + 1024r+256
6 n2 n

+ 7168r+2560 + 512r
A8  n

n

-A I 6144r+1024, A [2048ri
10 n + [12

Expressions (ii) (12) (14)and (15)have been used together with eqs.

(9) and (10) to evaluate the pressure signal of the 3-0-3 counter-

rotating propeller configuration. At x = 0 , these expressions show

signs of indeterminacy but after straight-forward manipulation in

conjunction with a limiting procedure they are reduced tot

A- 00 A - 0
3 6

B = cr C { - 3A (r+l)+2(llr+8)A2-16(32r+l)A 4+32rA6 } (16)

ClC' c

B6 - A(6r+6)-A2 (152r+140)+A4 (1176r+896)

-A6 (4096r+2304)+A 8 (7168r+2560)

-A 10 (6144r+1024)+A1 2 (2048r) }

where c' - I 1

2 2 1/2 2 112Sr2 (l+r2) (l+k2)

In spite of the fact that closed-form expressions have been

developed for the fluctuating pressure signal near the counterrotating

propeller, the numerical method described in Reference 4 is used in the

1
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present work since a coding program fur the evaluation of the total

instantaneous pressure signal was available for the ELECOM 100 computer.

Hence, as in Reference 4, the total oscillatory pressure "signature"

for a single blade is plotted for the angular interval -w to v . Since

the pressure equation is linear the contribution of individual blades

can be superimposed and the result for three blades, for example, can

be obtained from that for a single blade by summing the contributions

of the one blade at three 1200 intervals. The resulting composite

curve which has a cycle of 1200 for three blades, can be analyzed

harmonically by a 24-ordinate numerical procedure.

I-
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Part II

Approximate Evaluation of Pressure Fluctuation
Arising from the Blade Interference Effects

In the previous section the vibratory pressure field arising from

the m-O-m counterrotating propeller system has been evaluated as if the

two propellers operate separately. It is known, however, that because

of the small axial distance between the two propellers their mutual

interference will develop a pressure field which will give rise to

a time-dependent lift. It is believed that as two blade sections

approach and pass each other in relative motion this time-dependent

lift remains on the average very close to zero, but instantaneously

it may be large although of short duration. The interaction phenomenon

can possibly produce strong fluctuations in the close proximity of the

propellers and therefore it should be included in the analysis of the

oscillatory pressure field of counterrotating propellers. A study of

this interference phenomenon as a three-dimensional unsteady flow

problem is mathematically untractabe. It has been decided therefore

to study this phenomenon as a two-dimensional problem with the thought

that if such contributions to the pressure can be shown to be small

then they can be safely assumed as small in the actual three-dimensional

case. It is known that in the three-dimensional mathematical model

(with finite span), which is described by a bound vortex line and free

vortex shed from the tips of the wing, the induced velocity field is

of smaller amplitude than is that of the corresponding two-dimensional

model with infinite span represented by a lifting line. The trailing

vortex reduces the angle of attack of the incoming flow, and consequently
the lift and the generated pressure will be diminished.

The two-dimensional problem that is perhaps most closely

related to the one posed by the motion of the propeller blades is

that presented by two arrays of finite-chord foil sections moving

with the same angular velocity 2 but in opposite directions as shown

in Fig. 2b. It is, however, more convenient to study these effects
as of the relative motion of one cascade with respect to the other.
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If the string of blades of the forward propeller is assumed to be

fixed in space the cascade of the after propeller blades will then

be moving with angular velocity 2S . This sort of blade arrange-

ment is identical with that encountered in the stator and rotor cascades

of axial-flow machinery.

In order to preserve as many as possible of the geometric and

kinematic characteristics of the three-dimensional problem in this two-

dimensional model, so that the latter will become a reasonably useful

analogue, it will be assumed that the geometric blade characteristics

are those existing at the effective radius be = 0.7b of the propeller.

The blade spacing d will be determined as

21 (be)s,r

s,r ms,r

where m is the number of blades in the propeller and subscripts s

and r refer to the stator and rotor respectively. The incoming flow

to this cascade arrangement has a velocity V in the axial direction

equivalent to the speed of advance and a tangential velocity equal to

the product of effective radius and angular velocity.

This two-dimensional analogue has been studied in Reference 5

as a useful model for evaluation of the induced effects on the blades

of a typical turbomachine moving through a nonuniform field disturbed

by the stationary blades. The results of the theory of a single thin

airfoil in non-uniform motion have been utilized in order to calculate

the resulting unsteady effects on an infinite cascade of blades moving

with respect to a stationary row of blades (stator). Expressions have

1been developed for the induced velocities and the lift on a single

rotor blade due to the steady-state circulation distribution of each

and every stator blade as well as to the effect of the vorticities

shed by the stator blades and for the lift on a single stator blade due

to the steady-state circulation distribution of each rotor blade. Both

flat plate and elliptic distributicns of the steady circulation are

assumed in Reference 5.

One must keep in mind, however, that in reality the stator-
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rotor interference problem is much more complicated and many more

factors are involved than are treated in the above reference. Each

foil is influenced by 1) its own wake, 2) the variable bound vortices

of the fellow members of its own blade row, 3) their wakes, 4) the

variable bound vortices of members of the other blade row, 5) theirI wakes and finally 6) by the displacement effects of the blades, since

each blade is of finite chord and thickness. The problem can be

rigorously treated by solving a pair of integral equations which state

the requirement of the boundary conditions on the stationary and moving
blades, viz. the tangency of the flow along the moving blades and zero

velocity across the stationary blades. The solution of this system of

integral equations will determine the circulation distribution (loading)

of each blade and the corresponding pressure field generated by the

mutual interference of the blades will thus be obtained.

-r In Reference 5 Kemp and Sears have shown that the velocity,
v , induced at a rotor blade by the motion of the steady stator

circulation o r s  is given by

iar r r 2 ia iv mt
1(xt) e + 0 G r'- e r x )e r (17)

where

Tardr  la s exp r dr biU
Gr -e Hr r H2 J sr [ (li tan a-- d H e r V cosa

rs r
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0 J(mXs ) iJ1 (mXs) for the case of a flat-plate

H 6 distribution

2ie s m J (mXs) for the case of an elliptic

is circulation distribution

2c 2c

a - solidity of row, 2c r and a - - , solidity of
Or d s d

rotor and stator, respectively. 
s

1 ~ I +i(n/2-%s)
21TU

v - circular frequency of motion - d

Sbp axial distance between the propeller planes

-- angle of blade stagger (the complement of the effective

I pitch angle)

U - rotational speed of rotor, positive down

V r s - inflow speed idative to blade

JoJ 1- Bessel function of zero and first order, respectively.

I x,y- Cartesian coordinates of point in space referred to a

system of axes fixed in the blade with the origin at the

center (see Figure 2b) and with positive x in the

direction of the trailing edge.

As mentioned before, the additional effects on the rotor blades of the

vortex wake shed by the stator blades are also taken into account in

the above reference. In this case the induced velocity v 2 (r2

I indicates the effect of wake vorticity) at the rotor blades is given

in complex Fourier series form byt

vr2_ Z Vmk exp [ivrk(t- xr/Vr) ]  (18)

I m k

where

r lmT1ar b U k fFs r eVmk= d co s exp [ r (V c co + V)+ m r s d
s s s r s r l+cot ?[l- rs rk2s2

I r s

W r vr cr/Vr reduced frequency

1
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s S

F ,, G [Jo (X M)- i J1 (K M)]
m m 0 5 s

d iaLGS~o5  s b U ) U

G exp{lima[t(l i tan rcm d e Hr rx -, r  V Cos f
dr s s r

0 Jo(mXr)+ iJr(mr) for a flat plate circulation distribution

Hr

21e r (r) for an elliptic circulation distribution1 r m 1 )

and X va e -i(Y2ar
r r

X = summation over the number of blades. Theoretically m variesI
I from one to infinity, however only a few terms of the series

contribute to the induced velocity v2

summation over k from - aD to cc omitting k = 0
k This summation actually indicates that the vortex wake

shed by the stator is made up of the superposition of

waves of all harmonics from - cc to + d .

Finally the expression of the velocity v at the stator blade induced

by the motion of the steady rotor circulation 0r is given in

Reference 5 as

s . I - ias 0 X 2 - iC i v smt

r S
2 c !--- e x )(19)

m

where xs  is referred to a system of axes fixed in the stator blade

positive toward the trailing edge, v,- 2vU/d and the other symbols

are as defined previously.

The foregoing expressions for the induced velocities at the

rotor blades and stator blades can be written in a more convenient

form by replacing the exponentials with well-known series. For

instance, the exponent which appears in eq. (17) can be written as

.
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2tm jr c x -i(ir/2 - r )
d x - i (2Tm d -r)c e

s s r

m x

Sir

m 2Trmc -i(ty/2- a)
where -1  r e

With the transformation

x C ccose
r r

the corresponding exponential is written asm

ia -r cose O n

exp (_ - .r ) e j0Lr1 )+ 2 (-i) J (Lt )cos n8S 1

Therefore, the unsteady induced velocity on a rotor blade due to the steady

state circulation, i.e. eq. (17) restricted to the time-dependent term

alone~will be given by

r r s iv mt ((

0IT Gr) )cosn (21
r m n-1

where all symbols are as defined in eq. (17) and eq. (20).

In a similar fashion the unsteady induced velocity at a rotor

blade due to the vortex wake shed by the stator blades (see eq. 18) and

the velocity on the stator blade induced by the motion of the steady

rotor circulation will be given by

r2  iv kt k n k
V Vmke r [Jo(r 2)+ 2 X (_i) Jn(ir 2)cos n (22)

m k n=l

and[
1!
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r
S r S iv mt m n m

v W G e S [J (s +2 (-i) Jn( )cos no] (23)
2fTc in 0 ~s fSS

m n-1

respectively, where

k 2v kUc

r 2 -V-- r (24)

2Trmc -i(Tr/2+a S)
M se

s dr

In References 6 and 7 the acceleration potential of a thin airfoil

oscillating with an arbitrary mode or with an arbitrary velocity distri-

bution has been derived in the -plane, in which plane a line segment

of the physical z-plane, from x - -1 to x - 1 , has been transformed

into a circle of unit radius as shown in Sketch 1 .

For an airfoil with an arbitrary velocity distribution

i~t n

v(x,G) - W e (po+ 2 x(-l) P ) (25)

the corresponding acceleration potential is given by

sin ik ik sin n (
' 2LJW[C(k)(P +P )-P 1 ]l + 2UW ((26 P)+pn- - p )

ol1 1 lZ (n Pn-lpn- -2n nil n 26
n=l

where C(k) - Theodorsen's function of argument k

K1 (ik)

K 1(ik)+K (ik)

K (ik) and K (ik) - Modified Bessel functions of the second

kind of order 1 and zero, respectively

k - reduced frequency

U - velocity of incoming flow in the direction of the airfoil chord.



- 21 -

rl, )1 - polar coordinates of the field point from the leading

edge. (see Sketch 1)

r,@ - polar coordinates of the field point from the center of

the airfoil.(see Sketch 1)

(It must be noted that all linear dimensions in the above formulas

are expressed in terms of the semi-chord c of the foil.)

By the definition of the acceleration A

potential the pressure signal at any _PLANE r

point in the ?-plane will be given by

P -- P (27)

and the lift distribution on the foil

will be obtained from eq. (27) by putting z

r-l, rl.2 cos 01 in eq. (26). Now if Z-PLANE I Y

eq. (25) is compared with the equations

for the induced velocities on rotor or _----------_

stator, it is easy to identify the I

corresponding terms in each case. For SKETCH I'

the case of flow (r1 ) of the steady stator circulation past the rotor,

the various terms can be identified as followst

Po ( m ) and P - (-i)n JJo I

It is easy to show that

ik + P ik P ik i)n-I n ik i)n+l
7'n n-l n -n n+l " (-n " n-l + ()Jn " -'n 

" n+l

-0 for all n > I

Hence the corresponding acceleration potential in the -plane will be

given by

1
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r sV s ing r iv mt m m M
2 r r I me C( rlJo (Prl)i l (r) i ()1r)"r

1 f r r -1l 1 1

The unsteady pressure signal in non-dimensional form P.l/T1

at a point with polar coordinates rl, G1 in the 4-plane will be

given by

Pr 2V s ine C ml[o mL m m t X G(8

-rr =  r r 1 m m )-i -l r 1 1m 11

where the propeller disc loading coefficient

T mP2 o £rs

T' - =  2Tr

has been used. In a similar fashion the pressure signals due to flow

(r2), which concerns the effects of the stator wakes on the rotor, and

to flow (s) of steady rotor circulation on the stator will be given

by the following forms, respectively

Pr2 4nVr sin@1 OD CO k k k k

m=l k= -D2

(29)

and

p 2V sin@
T s r 1 ,msf m m m mI

where all the linear dimensions outside the first parenthesis are expressed

as fractions of the semi-chord at 0.7b. It must be kept in mind that

P and P are referred to coordinate systems fixed at rotor and statorr s

foils respectively. The function sinG1/r1  is determined for points

of known polar coordinates in the 4-plane of each foil. It can be

generally stated that the function sine 1/rI is the field point function
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which depends also on the geometric characteristics of the propeller

and the remaining terms constitute the loading function.

For computational simplification it will be assumed that at time

t = 0 the center of the chord of stator or rotor lies on the x-axis

of the coordinate system fixed relative to ship and the counter-

rotating propeller. Then by a simple trigonometric transformation a

point with coordinates xop YO in the original system will be determined

with respect to the orthogonal axes fixed in the rotor or stator blades

as follows:

For instance for the case when the origin of the blade axes is on the

x-axis of the ship the coordinates of a point (XoY o ) will be

xr= (xo-b p/2)cosa + 0sin ar

S-(xo-bp/2)sina r + yo cos a

with respect to a system fixed in the rotor, and

x s- (x 0+b p /2)cos as- y 0sin a

ys= (xo+bp/2)sin as- yo cos as

I with respect to the stator, where b is the distance between the two

propeller planes. Since the pressure signal is determined by means of

eq. 28, 29 and 30 in terms of sing1/rI (i.e. in the transform Z-plane),

the transformation from the physical plane (Xry r(sys)is the

next essential step. For a more systematic evaluation of the field

point function sing 1/rI  its contours for various values of (x rs Yrs )

have been plotted in Fig. (3). This chart is derived from the Joukowskl

1 transformat ion

where z = x+iy, Z - +iTl , and x and y are expressed in terms

of semi-chord at the effective radius. The following relations have

been used in evaluating the contours of sin@i/r I

1x 2 (1+
2+T)2
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1 1

1 1 sin 1

r 1 =rco se 1 -1

The pressure signal due to interference effects between the two propellers

1can now be determined by means of eq. 28, 29 and 30 and by the contours

of the field function sin@ /r I

Numerical calculations are made of the pressures along four

longitudinal transverses at various axial distances for the propeller

I configuration 3-0-3 (no. 2714, see ref. 8) with the following pertinent

characteristics

I 3-0-3 (No. 2714)

No. of blades, m = 3

Diameter, 2b 0.68 ft.

Semi-chord, c , at 0.7b - 0.186 ft.

Distance between

propeller planes, b W 0.124 ft.P
RPM = 900

Speed of advance = 8.16 ft/sec.

Results of these calculations are presented in TablesI and II.

Table I gives the blade loading factor (ratio of unsteady dimensionless

pressure to the field point function) for rotor and stator blades.

Table II gives the field point function referred to rotor and stator

blades for one position of the effective blade chord. From the products

f of stator or rotor blade-loading and field-point factors for a given

xo- Yo are obtained the steady and unsteady dimensionless pressure signals

1at that point, per blade of stator or rotor. Figure 4 shows the sum

of the blade-frequency pressure signals due to rotor and stator blades

plotted versus axial distance x0/D - x0/2b for different tip clearances

r/b- yO/b. For the unsteady interference effects two circulation

distributions are assumed, flat plate and elliptic. The results of Fig. 4

have been obtained for the blade chord center arbitrarily placed on the

X0-axis (yo- 0).
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If the pressure signal due to the interference effects is compared with

the quasi-steady pressures computed by the method of Part I (see Table

III) for the counterrotating system treated as though the two propellers

operate as seperate units in three-dimensional flow, it is seen that

up to a distance of 0.4 propeller radius, where the quasi-steady pressure

(three-dimensional) attains its maximum, that pressure is at least

10 times the pressure signal due to the interference contribution. At

larger distances, however, no conclusion can be drawn as to the relative

magnitudes of the pressure signal contributed by the interference effect

and of the quasi-steady signal because the rate of attenuation with

axial distance of the two-dimensional pressure is considerably smaller

than the rate of decay of the three-dimensional one. It can be stated,

however, that in the actual three-dimensional case the interference

effects will be smaller and will decay more rapidly.

To decide more conclusively about the relative importance of

the interference effect a two-dimensional analogue of the uncoupled

propeller configuration is considered. Expressions for the blade

frequency pressure signal contributed by the forward and after string

of blades operating independently have been developed by W. Jacobs

Iby a procedure similar to that used in Reference 5 to determine the
corresponding pressure due to the interference effects.

In Appendix D it is shown that the dimensionless pressure

signals at a field point due to the motion of cascades of blades of

the forward and after propeller operating independently are given as

follows$

p(1) 4 VR sing1  ia +imVt

e - e [1 Re O e( -iilO)]iJ
Tr_ _MB U r1 0 1 I

mn (31)

ahd

P (2) 4 UVR sin@1  ia + imvt)

Tr_ + m r - e e7 [1I 01) -11W CGI o0-1101+1iIL4
m

(32)
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respectively,

where

mB - number of blades

2 = angular velocity - 2v (r.p.s.)

VR a resultant velocity along the blade chord

21Ymce ia

I = d

2Ttmce i(fl/2a)

1 and all geometric characteristics are measured at 0.7 propeller radius

and are defined previously. Figure 5 graphically exhibits the comparison

in a two-dimensional mathematical model of the total blade frequency
pressure signal obtained from the motion of the two rows of blades

Ij operating separately with the pressure generated from the interference

effects. It is seen from this figure that the propeller interference

I gives rise to a pressure signal at most 15% of the corresponding pressure
obtained from the summation of the pressure fields of the two-rows of

cascade blades operating as separate units (uncoupled). From the results

it can be assumed, for practical purposes, that the additional pressure

contributed by the mutual blade interference effects can be neglected.

The limited numerical results presented here indicate thati

1. the effect of the vortex wakes shed by the stator blades on

the rotor (aft propeller) is comparable in magnitude to the effect

I induced by the stator (forward propeller) blades themselves,

2. the contribution of the rotor to the stator is small,

S3. the interference part of the vibratory pressure signal is

a small part of the total pressure signal in the near hydrodynamic1 field and can be neglected for the purpose of this analysis.

t
1.
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Part III

Calculation of the Pressure Field
Near 3-0-3 Counterrotating Propellers

The vibratory pressure of various points in the neighborhood of

a 3-0-3 counterrotating propeller is determined by utilizing the two

expressions evolved in Part I for the pressure signal when the system

of dual propellers is "in-phase" and "out-of-phase".

In figure (2a) the two 3-bladed propellers are shown to be

located at +x0 with respect to the origin of the coordinate system

fixed on their common axis of rotation at the point midway between the

propeller planes. In the computational work the two counterrotating

components are No. 2714 propellers (Reference 8) whose pertinent

characteristics have been given previously in Part II. The distance

between them is taken as 0.364 of the propeller radius, i.e. x - +0.182

in radii.

The locations at which the pressure signal is ,valuated are given

in the same figure. The pressure is computed along four longitudinal

transverses having tip clearances t/d - 0.1, 0.15, 0.20, 0.30 and at

1 6 different stations along each layer, having axial distancest x -0,0

0.182, 0.382, 0.482, 0.582, and 0.782 of the propeller radius.

Expressions 11, 12, 14 and 15 which have been developed in Part I

can be used in evaluating the harmonic coefficient of each individual

propeller with special precaution being taken for the axial distance x

For the forward propeller the x is replaced by x-x and for the

after propeller by x+x , since the general expressions have been
derived for the origin of the coordinate axes at a propeller center.

For several stations the coefficients of the first and second

blade-frequencies were evaluated by the developed expressions and their

values were found to be very close to those computed by numerical

methods. However, as was mentioned before, the computational work was

donein entirety on the ELECOM-100 computer, since the coding was available.

The total pressure signal was determined by summing up the contributions
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of three individual blades located at 1200 intervals. Then the harmonic

1 analysis was performed by the convenient numerical procedure described

in Reference 4.

i After the coefficients of the first and second harmonics are

determined, the pressuru signal in the field of the 3-0-3 counterrotatingI propeller is evaluated by using eq. (9) and (10), when blades are

"in-phase" and "out-of-phase", respectively.

Results for the total amplitude of the first and second harmonics

for the above two conditions have been plotted in Figures 6 and 7 versus

tip clearances, at various axial distances.

Cross-plots of these results are shown in Figures 8, 9 and 10,

where in addition the corresponding amplitudes of a single 3-bladed

propeller producing equivalent thrust and having the same RPM have been

plotted for comparison. The diameter of the conventional propeller has

been determined by calculations made at theDavid Taylor Model Basin on

the basis of the Troost optimum criteria, for SHP = 15,000 at 200 RPM.
It is found on this basis that the diameter D of an equivalents

single propeller is given in terms of the propeller diameter of the

counterrotating system as

Ds = 1.25 DCR

Therefore the corresponding thrust loading coefficient T' of the single

propeller will be given by

Ts 2TCR 2
To= - - TR -1.28 TC

it ~2 2T D~(. 2  (1.25)2 RC

The amplitudes of the pressure signal generated by the equivalent con-

ventional propeller are evaluated at the same field points at which

the pressure signals of the counterrotating system have been determined.

The results of these calculations are presented in Tables III and IV

as well as graphically in Figure 8, 9 and 10. This comparison indicates

that for the first harmonic when the blades are in alignment the vibratory

characteristics of the counterrotating configuration are undoubtedly
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superior to the corresponding characteristics of the equivalent con-

ventional single propeller in the immediate neighborhood of the propeller

i.e. x/b < 0.6 and t/d < 0.3. Outside of that region, however, (see

Fig. 8 and Table III) the equivalent single propeller is more advantageous

since the counterrotating configuration in the "in-phase" condition acts

as a single propeller with the same number of blades as one stage of the

dual. In the out-of-phase situation, however, the counterrotating

propeller system has always better vibratory characteristics than the

equivalent single propeller as shown in Figures 9 and 10 and Tables III

and IV. Since the in-phase situation is relatively infrequent, it can

be generally stated that the counterrotating propeller configuration

is superior to an equivalent conventional single propeller as far as

the vibratory characteristics are concerned.

Of course, mechanical complications are involved in the counter-

rotating propeller configuration which are not overlooked in selecting

the most advantageous configuration. It must also be pointed out, as

was mentioned in the introduction, that other criteria, like the avoidance

of cavitation, noise reduction, increase in efficiency, should be con-
sidered together with the vibratory characteristics in judging whether

or not the advantages that are indicated for a counterrotating system
counterbalance the disadvantages.

It is interesting to notice from the polar diagram (Figure 11) of

the first blade harmonics of the pressure signal as a function of the

observer's position relative to blade overlap, that the pressure

at the lines of blade intersections (in-phase) has the frequency and

the mode of a single propeller having the same number of blades as

one stage of the dual, whereas in the direction midway between the
intersection lines (out-of-phase) the pressure is that of a single

propeller having the total number of blades of the set of two. In
this figure the polar diagram of the pressure is made up of six loops

since there are six overlaps of the counterrotating blades in one
revolution. In the out-of-phase condition, there are six directions

which coincide with the bisectors of the 60 intervals between overlaps.
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ONCLUSIONS

This investigation indicates that the counterrotating propeller

system has vibratory characteristics much superior to the equivalent

single propeller having the same number of blades as one of its

components, delivering the same thrust at the same RPM at optimum

conditions. At a distance approximately 0.4 - 0.5 of the propeller

diameter from the propeller plane the conventional propeller becomes

better than the in-phase counterrotating system, but at instances when

the blades are not in coincidence, a situation which occurs more often

in a complete revolution, the superiority of the 3-0-3 system is

evident at points farther away.

This study indicates also that the vibratory pressure signal of

the counterrotating system can be obtained from the summation of the

pressure fields of its two components, as though the two propellers

operate as separate units, since their mutual interference effects

calculated on the basis of 2-dimensional theory have been found to be

a small part of the total pressure signal. In an actual three-

dimensional situation, the contribution of the interference effect

to the vibratory pressure signal will be smaller.

The study of the blade-blade interference effects in the two-

dimensional analogue indicates that the effect on the aft propeller of

the forward propeller with its shed vorticities is much more important

than the effect of the aft propeller on the forward one, hence the

latter effect can be omitted as negligible,
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TABLE I

Pr s inG
Sr ( 1) per blade of rotor for J 0.8

ir

With Flat Plate Distribution With EllipticDistribution
Blade Harmonics of Circulation of Circulation

1) Effect of steady circulation of stator

1 -.057 + 1.005 -.049 + 1.138

2 i.006 .002 + 1.019

3 1.001 .001 + 1.006

2) Effect of Wake Vorticities Shed by Stator

1 +.010 + i.027 .022 + i.010

2 -.004 - 1.037 -.022 - 1.002

P s inE lPS / ) r per blade of stator for J = 0.8

1) Effect of Steady circulation of rotor

1 -.001 - 1.026 -.021- 1.001

2 -.001 - 1.008 -.002

3 -.001 - 1.003 ---

1

I
I



TABLE II
s ing 1

Field point function (r ) referred to rotor and stator blades

(center of blade chord on x-axis)

sing1  sing
/R xo/R r 1) r)

0i0r 1rrI S
(. r/R)

1.2 0 .030 .200

.182 .050 .167

.382 .073 .120

.488 .077 .083

.582 .081 .050

.782 .093 -. 005

1.6 .093 -.080

2.0 .088 -.080

3.0 .083 -.070

4.0 .060 -.055

6.0 .042 -.039

8.0 .033 -.030

1.4 0 .023 .150

.182 .038 .133

.382 .055 .100

.488 .062 .073

.582 .067 .050

.782 .080 .013

1.6 .090 -.060

1,6 0 .019 .130

.182 .033 .111

.382 .044 .080

.488 .050 .067

.582 .055 .050

.782 .067 .020

1.6 .087 -. 040



TABLE III

First Blade Harmonics of Pressure Signal P/TCR due to

1) 3-0-3 counterrotating propellers of radius b

2) 3-bladed single propeller of radius 1.25b
(equivalent thrust)

Field point position 3-0-3 in-phase 3-0-3 out-of-phase Single

r/b P/TR* P/TI P/TR*

0 1.2 .083 .135 .070
1.3 .060 .072 .071
1.4 .044 .041 .051
1.6 .026 .015 .029

.182 1.2 .097 .063 .47
1,3 .068 .041 .23
1.4 .048 .026 .0941.6 .027 .012 .035

.382 1.2 .12 .041 .16
1.3 .078 .019 .12
1.4 .054 .010 .087
1.6 .028 .006 .041

.488 1.2 .10 .044 .11
1.3 .071 .024 .092
1.4 .050 .013 .0711.6 .027 .005 .036

1 .582 1.2 .082 .039 .086
1.3 .061 .024 .072
1.4 .045 .015 .055
1.6 .026 .006 .032

.782 1.2 .047 .024 .041
1.3 .039 .017 .035
1.4 .031 .012 .030

1,6 .020 .006 .020

Subscript CR refers to counterrotating propellers



TABLE IV

Second Blade Harmonics of Pressure Signal P//TtR due to

.) 3-0-3 counterrotating propeller of radius b

2) 3-bladed single propeller of radius 1.25b
(equivalent thrust)

F.ield point position .3-0-3 (in-phase or out-of-phase) -Single

x,/b /b P/T R,  .P/T R*

0 1.2 .032 .027
1.3 .019 .043
1.4 .011 .028
1.6 .004 .011

.182 1.2 .035 .23
1.3 .020 .12
1.4 .011 .056
1.6 .005 .013

.382 1.2 .041 .054
1.3 .021 .045
1.4 .012 .032
1.6 .004 .012

.488 1.2 .028 .035
1.3 .017 .029
1.4 .010 .021

1.6 .004 .009

.582 1.2 .018 .021
1.3 .012 .017

S1.4 .008 .012

1.6 .003 .006

.782 1.2 .007 .007
1.3 .005 .005
1.4 .004 .004
1.6 .002 ,003

Subscript CR refers to counterrotating propellers
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APPENDIX A

It is known that the sum of a finite geometric series,

" . 2+ n l-znl+l
l+z+z 2i*.O -z l

- 1-Z
je

If z e it can be shown thatI
cosG+cos20+... cos n - + sin[(n+i 2)9)

2 2 sin 0/2L
~cos[ (n~l/2)Q)

sin@+ sin2@+... sin nG - cot 0/2 - 2 sin ./2

These identities are used to prove that the vibratory pressure is made

Iup of all the harmonics whose order is an integer multiple of the number

of blades.

The cosine part of the pressure distribution is given by

mn-i wo

Tr -I Acos a +A cos k(g+ 31n)
k=O n-1 k-0

1where the first term is due to the first blade and the second is due to the

remaining (m-1) blades.

It can be shown that

m-i (-l)cos ka when k , integer multiple of m.cos k (a+ -L2 n)

n=l (m-i) cos ke when k - integer multiple of i

I
I
I
I
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Proof,

m .- i r n - i

Ln)= Z [cos k a cosk, - n - sin ka sink -n]mm m
.. n-l n- l

- cos ka cos k2T + cos 2 .2 .+ + cos(m-1)r m 
M

-sink a-sin + sin 2 - + + sin (m-i)

r sin[rn-i+ 1) k2l]

2 sin }
Sink a cot - }t

cosk- isin2rnk cos --- cos 2nk sin -k

cos 2Tnk cos lk + sin 2wk sin k
- sinka { cot k .T _ _

2 sin - "

-sin kan kCos Ti
cos ka .... sin ka cot k .,

7n-. m J

= coska (-1) - sink@ (0) -" coska provided that k / integer

multiple of m

I



A-3

OD

Then - L [Akcoska - Ak coska] = 0 (no pressure signal) if k 9 integer

k=O

multiple of m .

If k - integer multiple of m

rn-i rn-i

Z cosk (a + - n) - Z [cos ka cos 2un- sinka sin 2,n].. ,m I.I

n-i n=1

r-i

- ~Z coska cos 2vn - (m-1) coskt

n-l

Then
-- OD OD

mP'
MP [Akcoska+ Ak(m-1)coskd]hm Akin coska

k-O k-l

or

OD

Total eressure AI cos km

k=

The sine part of the pressure distribution is

mP Co 1 Bs 2n)

x B 8k sinka + I. I B k sin
k=O n=i k=O

s[ink cc 2 -- [coska sin k 2 nk -

n-1 n=1

cos (m-1/2

i c o s ka [ c o t k m 
2

m2 sin ku

m

I
1
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s in (m-1/2)k2,
1m

+ sin k [- + k ]
2 sin --m

- - sinka for k / integer multiple of m and P - 0

If k = integer multiple of m , it can be shown that

m-1

.' sin k (a +-2M) -(m-) sinkam
n-l

Then - m BkS inka

k=O

OD

k-l

I
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APPENDIX B

ExpresSions for the pressure signal due to a system of counterrotating

-. propellers will be developed at the instances when the blades are in

coincidence, "in phase", and in the "out-of-phase" position. For the

"in-phase" condition t - , whereas the out-of-phase situation occurs

whent-- whnt-2m

The pressure signal, restricted to the first and second blade harmvnics,

is

r m cos ma1 + A2m cos 2m 1 + B sin l* B2m sin 2m 1

(2) (2) (2) (2)
m  cos =a2 + A2 m cos 2md + B sin m=2 + B2m sin 2= 2

When t - "

W

(2) (2)
I Am  cos ma2 Am cos m(al-2wt)

(2)
SAm cos maI

(2) (2)
A 2m COS 2ma,2 w A 2m cos2m(a-2t)

k A2  cos 2m5I

(2) (2)
2sin m2 Bm sin m(a1 -2wt)

I (2)
- B s in ma

m 1

S(2) (2)

B sin 2m sin 2m(a 1 - 2wt)

SB 2  sin 2ma1
(2)

I
I
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Therefore

_-p(1) (2) {(1) (2) (1) (2)

p +p A +A )cos mC1 + (A2  A2 m cos 2m a1T# m 1 2

(1) (2) (1) (2)
+ (B +B ) sin m 1a + (B2  + B2  ) sin 2m a

m m 1 m 2

or

p +( 1 ) (2) 2 (1) (2)2T /(A m + A ) + (B m +Bi ) Cos (Mai-$a) +

-/ (1) (2) 2 (1) (2) 2co

S(A 2 m + A2m ) +(B2  +B2  'cos (2m

(1) (2) (1) (2)

where e " tan- m +Bm and 2 1 t;1 B2 m +B2 m

A m+A mA +A 2

The out-of-phase condition occurs at.

t

hence
(2) (2)

A cos 2 - A cos m (a1 - 2t)

(2)
-- Am  cos m1

(2) (2)
A2m cos 2. &20 A2m cos 2m (a1- 2wt)

(2)
- A2m cos 2m a1

(2) (2)
Bm  sin m a 2 - Bm sin m (L1-2wt)

I-
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(2)
-- B sin m a

m

(2) (2)
B2  sin 2m "2 B2m Sin 2m (dI - 2wt)

(2)
B 2m sin 2m a

Therefore

(1) (2) (1) (2) (1) (2)
T' - (Am -A )cos ma+ 2mA 2m

(1) (2) (1) (2)
+ (Bm  - B )sin m Q1+ (B2  +B2m ) sin 2md

or

(i (2) (1)_ (2) 2 (1) *(2) 2
... .. (Am -A ) + (Bm - B ) cos (ma1 -93)

(1) (2) 2 (1) (2) 2
24V + A2  ) + (B2  *B 2m ) cos (2ma-€

(1) (2)
~-lB-B

where c - tan m m3 A(1)- A (27
m m

(1) (2)

4 - B 2m B2m

AWl+ (2) 2
2m m A2

1
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APPENDIX C

The derivation of the Fourier coefficients of the second blade

frequency of the pressure signal near a three-bladed propeller given by

eq. (14) and (15) will be shown in very general steps and the most

representative type of integration will be carried out.

After the designated integration with respect to s the instantaneous

pressure signal given by eqs. (1:) and (2) becomes

P - c2(Ii-I2- 3+I4]+C [I -I6 +7 (c-l)

where C2- 1/2 C1 = J/2T

x x(x2 +r2 1/2 xr cosk xr2 2
1, 1 x ) 1r co1x o7M" 2" A" 3 e/ 4" 1/

e 2 ae 7

r2 sina cosa r sina r2 sin cosa5 ae1/2 6 a e/12 Z7 (x2" 1/2a1/2a ae (x+r2) a

2 2 x22i2
e = + x +r - 2r cosa and a -x+rsin

To evaluate the second harmonic of expression (C-l) it is necessary to

find the sine and cosine Fourier coefficients. The cosine coefficients ares

a,= 1 / x cos 6ada
1 1

a ' x(x2+r2)i/2cos6 oda
2 ~rJa

a i xrcosacos6dd

I-- T1f[
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= 1 xr cos 2 cos6ada4 Tr e1/2

-Tf

a 0 since the integrands are odd functions with5 6 7
respect to angle a

The corresponding sine coefficients ares

B1 = B2  = B B4 = 0 , since they are odd functions with respect

to a

TT

1 r sinacosasin6ada
5 iT f a e'7

-Tr

TT

B 1 f r sinasin6daB6 a e1/2
6 TT

Tr

B 1 r 2 sinccosasin6ada
7 ITr r ( 2 +r21) /2 a

B IT7 (x+r2).la

aa, and are the cosine and sine

coefficients of the components (Ii, 12 .*... 17) of eq. (C-i)

On expanding cos6a and sin6a in terms of cosa and sina the

following representative types of integral will occur:

C 2 cos a do, 1/2 where m (integer) - 0 .o**. 6

-T (l+x +r2 - 2rcosa)
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Dcos a d m (integer) 0 0, 2, 4# 6, 8
Dinm x2 +r2 sin2 a

IT

cos mad
Em 2 2 22 +r2.2rcos 2_/2 m (integer) - 0 ......... 8

-TI

Evaluation of C

m

Taking m - 6

C cos 6 da * 4 Cos da

f (lx 2 +r2 -2rcosa) 2  ('+x2+r2) f- (1.kcosa)/2

With the successive transformations a * 2x + ff and sin % - x *

- - the above integral takes the forms

12/ 6d d

c- (-+4 /V/2 (1-2sin 2 ) /. f (l12 2)6dx
6 2 2)1 /2(k) 1 /2  22)

0 0

- A -12 A2+60A 4-60A 6+240A 8-192A 1o+64A12 }

where all A's can be determined by the recurrence formula of eq. (14)

and + 4-~ 2n . (+:+r 2) 1/2 (1+k 2 )1/2-

Similarly

C - -X(Ao-8A2 24 A 4-32A 6 16 A8)

c2 -- x(A-4A 2. A4 )

and C o - A0 0

I
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In general

C * (-(-2)n (-2)2  (-2)3
C (-l) n+ Ao+ (-2) A2+ (-)2n(n-I)A4+ (-) n(n-1)(n-2)A6*'

Evaluation of D
m

In Reference 2 it is shown that when m is an odd integer

D -0.m

In the case m - even, if m - 2 ,then

2y i -2 rW/? W/2 2
DC s ada f cps .d sin ad

-2f +2sin2a f f x2+r2sin2a J '2+rlsin2a

42 2 2 -f (1 2 )d
x2+r sina x x+r sing

0 0

y/2T/2 4 2 11/2

x2+r2sin2a r 2 x 2 +r in2a
0 0 0

2 )/2 4 /2

r 4 x (r s a da

0 0

2 {(x2+r2)1
/ 2  }

provided that x 9 0
Similarly

D .  2- ( r 22 + 2 "2 2
xr 4 r 2r2

[r
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D6w 21Y (r2 +x2) 5/2 (r2+x2)2 _ (r22 22

6  xr 6 r 6  - 2 8

In general

rCos m d-2 cos 1-2
Din w = 2 '2 -7 f cosm- ada

r x +r r
-TT -IY

2 2
XD -- (last term of Din2)U ***Dim-2

+ m-
r

Evaluation of Em

The E integral will be shown to be a sum of all three kinds of complete
m

elliptic integrals. The technique of transforming this integral into the

complete elliptic integrals is given in Reference 2.

If m = 6 , then

E6  f r cos 6dd 2 f cos 6cda
(.x +r sin C .>. x 2co.a o112 -(1+x r' 2 x. (1+n ,u 2")(lk 2 oS)/ 2

0

r2  2 2r
where n - and k

x 1+x +r

With the successive transformations

- 2g+T and then sing a X

E6 takes the form

1 ~ 2 6

E __c (l-2x ) dx

6 2 V(, -
o (l+4nx (l-x )]v _(l- (1-k'x 2 )

where c 4A___ _k___ 2. k
2

(1+x2 +r2 )1 2x2 (l+k2 )112  1'- 1k

I.4
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This can be reduced to

E6= c Ia - 
12 1b+ 6 0 1  160 1d+ 240 I e - 192 If + 64 }

1

where Ia -

2 22

0 [1l+4n x2 (1-x 2 ]%lx 2 ) l - k fx 2

I 2 xdx
b 2 2 ]x 2 )

0 [l+4nx (l-x ] lx71-

I o x4dx 2etc

o [1+4nx (-x (1-k

In general it can be shown that

I (-2)1 (-2)2 C i + Tm(-1))( 2) I+......_~ Em  (-1)mc Ia+-l IT' m+b +"T '
M a s-= m 1b + 7*c j m(m-1)(m2 d...

In Reference 10, by the same general procedure, the various I's were

evaluated in terms of Ia, Lb and various A's . They are tabulated below.

If A- [1+4nx2 (1+x2 ) (1-x 2 )(1-k' 2x 2 )

then

1

I'r xxm -1 A + I 1n 1cj a - o b TnW a
0

6 _ 1"Td +A +(1 Ib + 1

0

x8dx A A 4 " n 2 - 4(1+ 1)A+(i+ L)Ib+ 1(1 + L)I4e, j-"A "r W'n 0 n4"4 4"n a

0

Io
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o
*x 0dx 6- 1 2 1 L)A 1 J 2+

"°J .- = - A--A l (1+- -,A

g- 6n 4n 4 4n 4n2 4n "

0

[+L(I+ 2n(.+ L( 1+ 2)1
4n in+(+ -) b 4n Tn-

I 1 2d 1 2

1
" A 1 1 1 ( 1 2)A 1

J a n 10 4n 8 4 n n- n' T-)

0

- ~41(+ 1)4. ('4. ) A- [L4 (I+ )+ L(1 . i-+(1+ 2) A

44 -(+ T-)+(1 2 1

+ ~ + - [(+ 1.)+ (1+ w] a

1 16

x dx L A 1 A' (1,'\A. "2-

. f" a m4" - 4 044n 8 4 i) 6

0

I
1 1(, 2 1+ 1 1 21

kA n
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{n (1+ 1 L)+ -( )+ 1)

{[l(l. 1) (l+ L.)+ (i+ L)+>.4 (1+ L.,. (l+ I an 4 n 4 n 4 n 4nn 14 i al

where Ia I b are given in eq. (14) and A's by the recurrence formula

(see eq. 14). The results have been written in rathm extended form, in

order to show the structure of the different expressions so that general

rules may be set down for the recapture of an expression from the

preceding one.

The following generalities can be deduced for the above expressionst

1. The coefficient of I is equal to L of the coefficient ofa 4n
I b  of the preceding expansion.

2. The coefficient of I is equal to the sum of the coefficients

of Ia  and Ib  of the preceding expansion.

3. The coefficient of A is equal to (-n--) of the coefficient

of Ib of the receding expansion.

4. The coefficient of A2  is equal to the coefficient of A°

of the preceding expansion, similarly that of A4  is equivalent

to the coefficient of A2  of the preceding expansion, that of

A6  to that of the A4  preceding, etc.

5. The highest subscript of A in a given expansion is four
less than the exponent of the original integral i.e. (n-4) so

that the A terms are from A to An 4  *

With these general rules the result of any integration of the form I n

can be written in terms of the coefficients of the previous expansion

I

After the three types of integral Cm* Dm1 and E which are encountered
m

I

I
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in the evaluation of the second blade harmonic of eq. (C-I) have been

determined, then by a trivial algebraic manipulation the final result

is obtained in the form of eq. (15) and (16).

i

I
1
I
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APPENDIX D

by W. Jacobs

i This appendix describes the use of the two-dimensional mathematical

model of the counterrotating propeller configuration in order to obtain

the pressure signals due to the independent motion of each of the two

cascades of blades representing the propellers.

1The coordinate axes are as in Sketch 2.

I YO

X°I

If the fil on (x,y) is reerdto the axes in a blade of an infinite

cascad, thenits velocity potential, referred to the 
singularities (4,0)

! on the blade, is given by

11

I..C

I #(x~~~~y) " Z -~~'-C tnl
[  r 

n ) cs _ DI

--~~~ n-- x +d) sie-

[U
a /
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where y = the strength of the circulation

- Ut

U - rotational speed of the propeller, ft/sec.

n = the blade number in the infinite cascade and the other

symbols are as defined before.

For a flat-plate distribution of the circulation

-; /_c - (D-2)

The vertical velocity is then

v02r- OD c c- [x-< jnd)sina-t]dt
c 2 - -c L\-f'/Cr.nay 21-C [ x- ('+nd) sina-t]2+[ y- (rnd) COsCL]2

or

V 0r OD dt(D-3
v= Re j (

2n=- -c (xt);i(Y-Te- ir~nde"
n=-ci -ca

Since (x-t) ;i(y-)e inde )-

de " x r - i(y- -tP )]+in

d r d -

-0o aC c- dv-- Re e (D.-4){1c , c 1 io _o

n- c{x- -C )}+ mwnT- e - e - --

But 1-incoth zz-inr

and coth z = 1 + 2 Z e provided thatIn

R(z)>O , i.e. - [(x- )cosa +ysina]> 0
d
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There are two possibilities:

1) (x-t)cosa + y sind>O

in which case the time-dependent part of eq. (D-4) becomes

-0 r a C c i-o [-2 -

0V ' Re ei - eaxp 2vmd xtiyij_ dd
= - x d' J-+ d-

M -C

or
ia iGtie ~

-0is -2Trre x +1inme y +i a* -T-me
V - cd Re 2: fe e d e d e d I e d+T

m -C

Let c cosQ , then d= -c sinQdQ and when -c, G-w and =+c

@= 0 . Then

c 2trme I 2Tme c cos@

-7e d d =cf(lcose)e d d

-c 0

- l{I (2nmce )- 1 (2 TIre )}
f c. Zb " d ' I ")

and

" e  -2v me iax i2tme i -i12trmy

v d -- Re-eed e d e d [1(x)- (x)]J

m

where X 2lTmce (D-5)d

The velocity distribution along the blade chord will be obtained by setting

y-O , x = c cosO . Then

I
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ia i n vt 2me c cose)[ro(x)

- 2.G . . ReZ fe e exp d E-Io)) 1-

m

or

V(,@" r eZ l*+imvt n
v(xG)U- 0r ReZ e e [ i (X)-t([)] [0Jo(I)2 (-i) J( cosn }

m -- n-1

-i(- a) (D-6)

where p a d e

v - 2nU/d

By using the .acceleration potential, the pressure can be obtained

as before, at any point defined by the field point function (sino)/r1

The dimensionless pressure signal due to the velocity distribution (6)

is

4wV R  sing ia +imVt

m
(D-7)

where mB - number of blades in the propeller

- 27(r.p.s.)

VR = resultant velocity along the blade chord

T mpg0r
T'- b = --,2---

and all geometric characteristics are measured at 0.7 propeller radius.

2) (C-x)cosa T y sin& > 0 in which case the time-dependent part of eq. (4)

becomes

21yme x -i2umely i2MrnT- 2nme i
r.o d {e e d e d + d}V a Re e e e a- p c e dt

m -C

1



Let * -c cosQ , then d = csin~d9 and when { = -c , e-0 and + U +c ,

G-v . Then

c -2rme V 2umeia cCos@
fc+ d C (l+cOsQ)e d dQe d . Cd

-c o

{ 0 2Tmcei (2izmce }CM d o + zI  I d

The velocity distribution along the blade chord will be obtained

by setting y - 0 x = -c cosG . Then

0 1 iC +imvt 2nme CCO O

V(x.) -j Re , e7 exp d-ca- -- )[o( )*l ( Q]

m

or

.-1 ic ievt *n -(x.n]

v(x*Q)u 0 re e ia e 11 (X)+I W.)][Jo ( J)+2 C( ') Jn(I)conej

m rul

(D-8)

and

p 4iiV sin I  - im +imvt

m_ d( )Rez Ie 1 0i0x+ I1 W)I j(( toG- i, ( )J+i, (L)jJ

(D-9)

Whether equation (D-7) or equation (D-9) is used to calculatec the

pressure signal at a point x.y referred to particular blade-chord axes

depends on the condition

1) (x-c cosQ) cosa + y sina> 0

or

I



2) (-c cosO - x) cosa 7 y sina > 0

-- at that point. It is found that, for the case of blade chord centered

on the x 0-axis and for points on the ship's centerplane at r/b - 1.2

and x 0/b from 0 to 8 ,eq. (D-7) applies to the after propeller and

eq. (D-9) to the forward propeller.
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